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Chapter 1

Introduction

The research field of shape optimization provides a variety of potential appli-
cations to engineering topics. With respect to fluid dynamics, industrial scale
applications include the shape optimization of ship hulls, curved ducts, as well
as centrifugal pumps. Common motivations for shape optimization are the min-
imization of drag or power loss and the active flow control.

In this context, the adjoint-based shape optimization is often applied, since it
offers an efficient method to calculate the shape sensitivity. The main feature
of this method is that the computational costs are independent of the number
of design variables [1]. The method requires to solve the adjoint equations in
addition to the physical (primal) ones. The application of the adjoint-based
optimization to unsteady problems causes that the adjoint equations have to be
integrated backward in time, which requires the primal solution to be available
in the solution process [2]. However, industrial applications often involves small
time steps and large computational grids such that the storage of the whole
primal solution leads to a memory overhead [3]. Moreover, for large problems the
memory requirements can exceed the maximal capacity of the system making it
impossible to store the primal solution and thus prevent the optimization from
being carried out properly.

A remedy for this issue are the well known and widely used checkpointing tech-
niques [4]. Here, the full storage of the primal solution is omitted and the solution
is only stored for a fixed number of time instances, the checkpoints, and the miss-
ing information is recomputed on demand. Although this approach reduces the
storage requirements, it significantly raises the computational effort simultane-
ously [3].
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In contrast, this work pursues the approach of using a Reduced Order Model
(ROM) to obtain an approximation of the primal flow field that has a greatly
reduced memory requirement. In fluid dynamics problems, the Proper Orthog-
onal Decomposition (POD) is widely used for this purpose [3]. The main idea
of this technique derives from the notion of the Principal Component Analysis
(PCA) with the aim of the extraction of the predominant part of the flow field
to obtain a compact representation which is optimal with respect to its memory
consumption [2].

However, the typical POD algorithm requires the complete flow field to be avail-
able beforehand. This requirement makes the method inappropriate for the un-
steady adjoint-based optimization, as it also results in a memory exhaustion.
Therefore, the objective of this thesis is to develop an incremental variant of the
POD such that the reduced primal field can be computed in a computational
efficient way on the fly during the primal computation. Since the POD and the
Singular Value Decomposition (SVD) can be used indifferently [2] and for the
SVD an incremental variant already exists [5] it is more reasonable to resort to
the SVD instead of the POD in the course of this thesis.

Therefore, this thesis is organized as follows: In chapter 2 the mathematical
model and the optimization framework for the unsteady adjoint-based fluid dy-
namic shape optimization are introduced. Subsequently, in chapter 3 the model
reduction via the SVD is outlined and further a general approach for the additive
modification of a SVD is presented. Based on this, different incremental SVD
variants can be derived. In chapter 4, the incremental construction of the reduced
primal flow field and its application to the optimization process is discussed. In
addition, extensions that aim to increase the overall power of the incremental
approach are provided. Afterwards, in chapter 5 the incremental SVD and its ex-
tensions are tested numerically and the shape optimization based on the reduced
primal field is applied to two test cases of different complexity. Finally, the thesis
closes with a conclusion and outlines further research in chapter 6.



Chapter 2

Unsteady Adjoint-Based Shape
Optimization

In this chapter, the approach of the unsteady adjoint-based fluid dynamic shape
optimization is briefly prescribed. The main focus is on the development of
an optimization method for dealing with unsteady laminar flows of incompress-
ible fluids. For this purpose, the chapter is structured as follows. Initially, the
mathematical modeling of the physical problem is presented. Based on this, the
optimization problem is examined and the adjoint equations are derived. Finally,
the calculation of the surface sensitivity is discussed and its application to a gra-
dient based optimization method is pointed out. Within this chapter, Einstein’s
summation convention is used for repeated lower-case Latin subscripts.

The obtained physical problem is modeled for a domain Ω ⊂ Rd with d = 2, 3
and Γ = ∂Ω in a time interval T = [t1, t2] by the incompressible Navier-Stokes
equations (NSE). Thus in residual form the governing primal equations for the
vector-valued velocity ui and scalar pressure p are given by

Ru
i :ρ

∂ui
∂t

+ ρuj
∂ui
∂xj

+
∂

∂xj
[pδij − 2µSij] = 0, (2.1a)

Rp :− ∂ui
∂xi

= 0. (2.1b)

Here, Sij = 0.5(∂ui/∂xj + ∂uj/∂xi), δij, ρ and µ with i, j ≤ d refer to the
components of the strain-rate tensor, the Kronecker delta components, the fluid
density and the molecular viscosity, respectively.
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Starting from the primal flow described by the NSE, the optimization problem
is examined. Since the shape optimization is subject to the behavior of the
surrounding flow field it is expressed by an PDE-constrained optimization, viz.

(P )

{
min
c∈Cad

J(y, c),

s.t. R(y, c) = 0,
(2.2)

where J denotes the objective or cost functional, y the vector of primal states,
which consists of ui and p, and R the PDE constrains in form of the residuals in
Eqs. 2.1. Furthermore, c is the control parameter and Cad the set of all admissible
states from which c is selected. In the case of shape optimization c refers to the
shape of the structure which should be optimized.
In this work, the focus is on minimizing the drag force acting on the considered
structure. According to [1, 6], the cost functional for the time-averaged fluid flow
induced force projected in a spatial direction di is given by

J =
1

t2 − t1

∫
T

∫
ΓO

[pδij − 2µSij]njdidΓdt (2.3)

where ΓO ⊂ Γ defines the boundary of the structure which shape should be
optimized or merely a section of it. After having formulated the optimization
in Eq. 2.2 as a constrained problem, the Lagrangian principle can be applied to
eliminate the constrains [7]. Here, from the Lagrangian formalism the continuous
Lagrange functional

L = J +

∫
T

∫
Ω

[ûiR
u
i + p̂Rp] dΩdt (2.4)

is obtained [1, 8]. The Lagrangian multipliers ûi and p̂ refer to the adjoint velocity
and the adjoint pressure, respectively. From the necessary first order optimality
conditions it then follows that the derivatives of the objective have to vanish
at the optimal point in all directions [1]. Thus for the total variation at the
minimum

δL = δŷL · δŷ + δyL · δy + δcL · δc
!

= 0, (2.5)

have to hold and each term must disappear [8]. The single terms denote the
variation of the Lagrangian in the direction of adjoint δŷ and primal state δy
as well as control δc. This condition leads to the adjoint equations [9] and also
permits a definition of the sensitivity rule along the design surface.
The requirement of vanishing derivatives yields to the adjoint equations:

R̂u
i :− ρ∂ûi

∂t
− ρuj

∂ûi
∂xj

+ ρûj
∂ui
∂xj

+
∂

∂xj

[
p̂δij − 2µŜij

]
= 0, (2.6a)

R̂p :− ∂ûi
∂xi

= 0. (2.6b)
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The adjoint equations are similar to the primal equations and represent the ad-
joint companions to the continuity and momentum equation, respectively. Nev-
ertheless, in the adjoint momentum equation an additional advection term occur
and the sign of the time derivative has changed. Further, the primal velocity oc-
curs in the adjoint convection terms. Thus, in order to solve the adjoint problem,
the primal solution of the same time instant must be available. However, since
the adjoint solution points backwards in time [2, 1], the primal equations are
solved first, followed by the adjoint equations. Thereby the data of the primal
calculation must be available. The boundary conditions of the adjoint equations
result from the boundary integrals occurring due to the partial integration in Eq.
2.5, which must vanish to satisfy the optimality condition. The specific consid-
eration is beyond the scope of this thesis but the interested reader can find more
information in [2, 3, 1, 8].
Due to the unsteady nature of the flow problem, in addition to the boundary
conditions an initial condition for the adjoint problem needs to be determined.
The term containing the time derivative in Eq. 2.5 yields

∫
T

∫
Ω

ρûi
∂δui
∂t

dΩdt =

∫
Ω

ρûiδuidΩ

t=t2
t=t1

−
∫
T

∫
Ω

ρ
∂ûi
∂t
δuidΩdt (2.7)

where the integral evaluated at the boundaries of the time interval have to vanish.
For t = t1, the initial condition for the primal equations leads to δui = 0 [3].
Since no information exists for ui at time t = t2, to guarantee that the boundary
integral vanishes ûi = 0 have to be set as the initial condition for the adjoint flow
at t = t2.

After having solved the primal (physical) and the adjoint problem, finally a sen-
sitivity rule along the controlled design wall can be specified with the aid of the
optimality condition on δcL · δc from Eq. 2.5 according to [8, 1, 3] by

SL = −
∫
T

∫
ΓO

µ
∂ui
∂xj

∂ûi
∂xk

njnkdΓOdt. (2.8)

Next, the gradient can be extracted from the sensitivity SL. However, it is pos-
sible that the computed surface sensitivity is rough. Thus the Laplace-Beltrami
metric [10] is employed to extract a smooth gradient GL out of the sensitivity by

GLi
− λ∆ΓGLi

= SLni (2.9)

with the Laplace-Beltrami operator ∆Γ = ∆ − ∆n, the user-defined control of
smoothing λ and the normal vector ni at each face of Γ [8].
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Based on the resulting gradient field, the displacement field di is computed ac-
cording to

∂

∂xj

[
q
∂di
∂xj

]
= 0 in Ω, di = GLi

in ΓO, di = 0 in Γ \ ΓO (2.10)

where q = 1/(WD + ε), with wall normal distance WD and ε = 10−20 [8]. Subse-
quently, the shape can be updated according to the displacement field.

The overall optimization framework is summarized in algorithm 1 for a time step
based numerical scheme with q time steps tn which are equidistantly distributed
in the interval T . Here, the optimization is initialized with the shape c0 and the
shape is updated with means of the presented method imax times.

Algorithm 1 Optimization Framework

Require: Initial shape c0

1: i = 1
2: while i ≤ imax do
3: n← 1
4: while n ≤ q do
5: Solve primal problem in Eq. 2.1 at time tn in ci

6: n← n+ 1
7: end while
8: n← q
9: while n ≥ 0 do
10: Solve adjoint problem in Eq. 2.6 at time tn in ci

11: n← n− 1
12: end while
13: Compute surface sensitivity according to Eq. 2.8
14: Update shape to ci+1 using the steepest decent method
15: i← i+ 1
16: end while



Chapter 3

Model reduction via Singular
Value Decomposition

In this chapter, first the theoretical foundations of the Singular Value Decompo-
sition (SVD) and the model reduction using the truncated SVD are presented.
Subsequently, the additive modification of a SVD is examined. This is regarded
as the basis of the incremental SVD.

3.1 Singular Value Decomposition

This section gives an introduction to the basic theory of the singular value decom-
position (SVD) for real matrices. For this purpose, different variants of the SVD
are presented and the for this thesis relevant properties are summarized. Since
the following statements are standard information, their proofs are assumed to
be known.

Theorem 3.1.1 (Singular Value Decomposition (SVD)). Let A ∈ Rp×q. Then
there exist the orthogonal matrices U = (u1, . . . , up) ∈ Rp×p and V =
(v1, . . . , vq) ∈ Rq×q as well as a diagonal matrix Σ = (σiδij)ij ∈ Rp×q such that

A = UΣV T =
d∑
i=1

σiuiv
T
i (3.1)

with singular values σ1 ≥ · · · ≥ σd ≥ 0, singular vectors ui, vj and d = min{p, q}.

Theorem 3.1.2. The singular values of a matrix A ∈ Rp×q are unique.
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Corollary 3.1.3. Let A ∈ Rp×q. Then the invariant ||A|| = ||Σ|| yields

1. ||A||2 = σ1,

2. ||A||F =

√
p∑
i=1

q∑
j=1

|aij|2 =
√∑d

i=1 σ
2
i .

Corollary 3.1.4. Let A ∈ Rp×q with corresponding SVD A = UΣV T , U =
(u1, . . . , up) ∈ Rp×p, V = (v1, . . . , vq) ∈ Rq×q and r = max{k ∈ N : σk 6= 0} the
amount of positive singular values. Then

1. rank(A) = r,

2. ker(A) = span(vr+1, . . . vq),

3. im(A) = span(u1, . . . , ur),

4. A =
∑r

i=1 σiuiv
T
i

hold.

Thus Cor. 3.1.4 yields that only the first r singular vectors are needed to deter-
mine the matrix A via the SVD. This results in the following corollary.

Corollary 3.1.5 (Reduced singular value decomposition (rSVD)). Let A ∈ Rp×q

with rank(A) = r ≤ min{p, q}. Then there exist the orthogonal matrices Ur =
(u1, . . . , ur) ∈ Rp×r and Vr = (v1, . . . , vr) ∈ Rq×r as well as Σr = (σiδij)ij ∈ Rr×r

such that

A = UrΣrV
T
r =

r∑
i=1

σiuiv
T
i (3.2)

with singular values σ1 ≥ · · · ≥ σr > 0 and singular vectors ui, vj.

The methodology of neglecting zero-valued singular values inspires the approxi-
mation approach of additionally truncating the smallest non-zero singular values.
This represents the assumption that small singular values have only a minor im-
pact on the approximation quality. This conjecture will be discussed afterwards.

Definition 3.1.6 (Truncated singular value decomposition (tSVD)). Let A ∈
Rp×q with rank(A) = r and corresponding rSVD A = UrΣrV

T
r . Then the rank-t

tSVD of A with 0 < t < r is defined as

At = UtΣtV
T
t =

t∑
i=1

σiuiv
T
i (3.3)
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with Ut = (u1, . . . , ut) ∈ Rp×t, Vt = (v1, . . . , vt) ∈ Rq×t and Σt =
diag(σ1, . . . , σt) ∈ Rt×t. Thereby At ∈ Rp×q denotes the matrix obtained by ne-
glecting the r − t smallest singular values of A in its rSVD.

Next, the impact of the truncation of the singular values on the approximation
quality is examined.

Theorem 3.1.7 (Eckart-Young Theorem [11]). Let A ∈ Rp×q with rank(A) = r
and At ∈ Rp×q obtained by the rank-t tSVD of A with 0 < t < r. Then

min
rank(B)=t
B∈Rp×q

||A−B|| = ||A− At|| =


σt+1 if || · ||2,√

r∑
i=t+1

σ2
i if || · ||F

(3.4)

holds. Here σt+1 denotes the largest singular value of A which is no singular value
of At.

Definition 3.1.8 (Retained Energy). A criterion for the quality of the truncation
of the tSVD is the retained energy of the approximation. Since the energy of a
matrix A is definded via its squared Frobenius norm [12] the retained energy is
given by

η =
||At||2F
||A||2F

=

∑t
i=1 σ

2
i∑r

i=1 σ
2
i

(3.5)

where t < r denotes the rank of the tSVD and r the rank of A.

Remark 3.1.9. Since the calculation of all singular values σi of a matrix A in
Def. 3.1.8 is impractical for large rank r � t the following bounds are introduced.
Let r ≥ t̃ ≥ t be the amount of economically computable singular values. Then
an upper bound is given by

ηupper =

∑t
i=1 σ

2
i∑t̃

i=1 σ
2
i

(3.6)

and a lower bound by

ηlower =

∑t
i=1 σ

2
i∑t̃

i=1 σ
2
i + (r − t̃)σ2

t̃

(3.7)

such that

ηlower ≤ η ≤ ηupper (3.8)

holds.
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3.2 Additive Modification of the SVD

The objective of this chapter is to derive an algorithm that allows the modification
of an already existing SVD without any knowledge about the underlying system
matrix. This methodology can then be used for incrementally update the SVD.
For this purpose, at first a general approach of an additive rank-c modification of
the SVD is revealed. Subsequently, the for this work relevant column-extending
modification of the system matrix is derived from these results.

Theorem 3.2.1 (Additive rank-c modification of a rSVD). Let A ∈ Rp×q with
rank-r rSVD A = UΣV and X ∈ Rp×c, Y ∈ Rq×c be arbitrary matrices of rank
c. Then the rSVD ŨΣ̃Ṽ T of A+XY T is given by

Ũ =
[
U QX

]
U ′ (3.9)

Ṽ =
[
V QY

]
V ′ (3.10)

Σ̃ = Σ′ (3.11)

where QXRX and QYRY are QR decompositions of (I−UUT )X and (I−V V T )Y ,
respectively. Additionally, U ′Σ′V ′T denotes the rSVD of K with

K =

[
I UTX
0 RX

] [
Σ 0
0 I

] [
I V TY
0 RY

]T
=

[
Σ 0
0 0

]
+

[
UTX
RX

] [
V TY
RY

]T
. (3.12)

Proof. Let UΣV T be the rSVD of A ∈ Rp×q. Then A + XY T = UΣV T + XY T

holds. This can be reformulated into the SVD resembling expression

A+XY T =
[
U X

] [Σ 0
0 I

] [
V Y

]T
. (3.13)

Since the matrix X is arbitrary
[
U X

]
has to be reorthogonalized to satisfy the

properties of a SVD . Therefore, the component of X that is orthogonal to U is
extracted and orthogonalized as follows[

U X
]

=
[
U (I − UUT )X + UUTX

]
=
[
U (I − UUT )X

] [I UTX
0 I

]
=
[
U QX

] [I UTX
0 RX

]
where QXRX = (I − UUT )X is a QR decomposition.
The analogue approach for

[
V Y

]
yields

[
V Y

]
=
[
V QY

] [I V TY
0 RY

]
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with QR decomposition QYRY = (I − V V T )Y . Then the substitution of both
expressions in Eq. 3.13 leads to

A+XY T =
[
U QX

] [I UTX
0 RX

] [
Σ 0
0 I

] [
I V TY
0 RY

]T [
V QY

]T
with outer orthogonal matrices. Further, let K be defined as the factorization of
the inner matrices such that

K =

[
I UTX
0 RX

] [
Σ 0
0 I

] [
I V TY
0 RY

]T
=

[
Σ 0
0 0

] [
UTX
RX

] [
V TY
RY

]T
.

Then Theorem 3.1.1 yields the existence of the singular value decomposition
U ′Σ′V ′T of K. Thus, Ũ =

[
U QX

]
U ′, Σ̃ = Σ′ and Ṽ =

[
V QY

]
V ′ are

obtained and constitute the SVD of A+XY T .

Since this work mainly deals with rank-1 modifications (c = 1) the following
corollary covers this case more precisely.

Corollary 3.2.2 (Additive rank-1 modification of a rSVD). Let the same as-
sumptions be given as in Th. 3.2.1 with c = 1 and thus x = X ∈ Rp, y = Y ∈ Rq.
Then let QX = R−1

x qx and QY = R−1
y qy with qx = (x−UUTx), Rx = ||x−UUTx||2

and qy = (y− V V Ty), Ry = ||y− V V Ty||2, respectively. K is then formulated by

K =

[
Σ 0
0 0

]
+

[
m
||qx||2

] [
n
||qy||2

]T
(3.14)

with m = UTx and n = V Ty and is given as a sum of a diagonal matrix and a
rank-1 matrix.

The approach outlined above provides a variety of possibilities to modify the
system matrix. For instance, in addition to updating and downdating, individual
values can be modified or rows and columns can be exchanged [13]. However, in
this work the focus is on the update or column extension of the system matrix.
Therefore, this special case is derived from the general formulation.

Corollary 3.2.3 (Additive column adding rank-c modification of a rSVD). Let
A ∈ Rp×q with rank-r rSVD A = UΣV . The column updating by the matrix
B ∈ Rp×c is achieved by extending A and V by c additional zero columns such

that
[
A 0

]
= UΣ

[
V 0

]T
and by setting X = B and Y =

[
0 I

]
. This yields to[

A B
]

=
[
A 0

]
+B

[
0 I

]T
=
[
A 0

]
+
[
0 B

]
. (3.15)

Then the additive modification can again be performed according to Theorem
3.2.1.
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The procedure is pointed out for a single column extension in the following re-
mark.

Remark 3.2.4 (Additive column adding rank-1 modification of a rSVD). Based
on the results of Cor. 3.2.2 and 3.2.3 a column-adding rank-1 modification can
be performed for the vector b ∈ Rp by setting x = b and y = [0, . . . , 0, 1]T ∈ Rq.
Then the updated rSVD is given by

[
A b

]
=
[
U Qx

] [Σ m
0 ||qx||2

]
︸ ︷︷ ︸

K

[
V 0
0 1

]T
= ŨU ′︸︷︷︸

Ũ

Σ′︸︷︷︸
Σ̃

V ′T Ṽ T︸ ︷︷ ︸
Ṽ T

(3.16)

with K = U ′Σ′V ′T .

All of the additive modifications presented so far result in a rank enhancement
and thus in a higher memory consumption. The integrated truncation of a tSVD
in the additive modification is depicted below.

Remark 3.2.5 (Additive rank-c modification of a rank-t tSVD). Since Σ̃ = Σ′ in
Eq. 3.11 the rank-t truncation of an additive rank-c modification can be achieved
by truncating K of Eq. 3.12 according to Def. 3.1.6. This yields

Ũ =
[
U QX

]
U ′(:, 1 : t), (3.17)

Ṽ =
[
V QY

]
V ′(:, 1 : t), (3.18)

Σ̃ = Σ′(1 : t, 1 : t). (3.19)

Remark 3.2.6 (Re-orthogonalization of SVD). Since Ũ and Ṽ are tall thin
matrices, repeatedly rotating their column spaces in Eq. 3.9, 3.10 makes loss of
orthogonality through numerical error an issue. This problem can be prevented
by orthogonalization with means of QR decomposition before performing the SVD
of K in Eq. 3.12 [5]. This yields to an modification of K of the form[

A B
]

= QŨ RŨKoldR
T
Ṽ︸ ︷︷ ︸

Knew

QT
Ṽ

(3.20)

with QŨRŨ =
[
U QX

]
and QṼRṼ =

[
V QY

]
.

In conclusion, the additive column adding rank-1 modification of a tSVD is pre-
sented in algorithm 2 and additional remarks are provided about the memory
consumption of the approximation by a tSVD and the computational cost of the
additive modification.
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Algorithm 2 Additive column adding rank-1 modification of a tSVD

Require: Ui ∈ Rp×k, Vi ∈ Rq×k, Σi ∈ Rk×k, x ∈ Rq, r ∈ N
1: if k = 0 then
2: Σi+1 ← ||x||2
3: Ui+1 ← x/Σi+1

4: Vi+1 ← 1
5: else
6: m← UT

i x
7: p← x− Uim
8: P ← p/||p||2
9: Q←

[
Ui P

]
10: K ←

[
Σ m
0 ||p||2

]
11: if QTQ 6= I then
12: [Q,R]← rQR(Q)
13: K ← RK
14: end if
15: [Utemp,Σtemp, Vtemp]← rSVD(K)
16: t← min(r, k + 1)
17: Σi+1 ← Σtemp[1 : t :, 1 : t]
18: Ui+1 ← QUtemp[1 : k + 1, 1 : t]

19: Vi+1 ←
[
Vi 0
0 1

]
Vtemp[1 : k + 1, 1 : t]

20: end if

Remark 3.2.7 (Memory Consumption of tSVD). Let the memory consumption
be measured by the total number of entries of the matrices. Then the consumption
of the rank-t truncated SVD with respect to approximated matrix A ∈ Rp×q is given
by

MEMrank−t =
t(p+ q + 1)

pq
. (3.21)

Hereby, instead of storing the diagonal matrix Σ the singular values are stored
vector-wise in (σi)i ∈ Rt.

Remark 3.2.8 (Computational Effort of tSVD). The main computational effort
is in the following three operations. Firstly, the QR-similar decompositions to
obtain QX and QY take O((p + q)c2). Secondly, the SVD of K in Eq. 3.12 has
a complexity of O((t + c)3). Thirdly, the rotations of the subspaces in Eq. 3.9
and Eq. 3.10 need O((p + q)(t + c)t) operations. Since p, q � t > c the bulk of
computational effort is needed for the subspace rotations.



Chapter 4

Application to reduced Flow
Field Model and Optimization

The previous chapter introduced the theoretical fundamentals of the approxi-
mation of a matrix by the truncation of the corresponding SVD and further an
algorithm of its additive modification. In this chapter its application to unsteady
fluid dynamics problems will be discussed.

For this purpose, this chapter is organized as follows. First, the general proce-
dure of the construction of an approximation of the primal solution field using
the incremental tSVD is outlined. As this work relies on the in-house finite vol-
ume solver FreSCo+ for the numerical calculations, the procedure is tailored as
well as possible to this circumstance. Afterwards, approaches to improve the
performance are presented. These include an attempt for a more efficient update
of the SVD, a possibility for adaptive rank determination and a parallelization
technique suited for the solver FresCo+.

4.1 Incremental Update of reduced Flow Field

This chapter provides first an insight into the storage of the full primal solution
field. Based on this, it is revealed how the itSVD can be integrated into the op-
timization process to achieve a significant reduction of the memory consumption
as outlined in Remark 3.2.7.

The storage of the full primal solution is equivalent to store the solution of all
time steps. Based on the requirement of a time invariant grid with a constant
number of flow variables, the storage can be realized by the so-called snapshot
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matrix [2]. This matrix shall be defined in below for a primal simulation with q
time steps.

Definition 4.1.1 (Snapshot Matrix). Let a(tn) ∈ Rp denote the discrete solution
vector of Eq. 2.1 at time tn = tn−1 + ∆tn with 1 ≤ n ≤ q. Here, p corresponds
to the total number of unknowns and q to the total number of time steps. The
snapshot matrix A ∈ Rp×q is then defined by

A =

 | | |
a(t1) a(t2) . . . a(tq)
| | |

 (4.1a)

=
[
a1 a2 . . . aq

]
. (4.1b)

Remark 4.1.2. Note that a(tn) contains the spatial solution of all physical un-
knowns in stacked format, eg.

a(tn) =

u1(tn)
u2(tn)
u3(tn)

 (4.2)

with ui(tn) ∈ Rm. Since in this work a cell-centered finite volume framework is
used m refers to the total number of cells.

The snapshot matrix defined above is the result of a finished calculation, which
already includes the solution of all time steps. However, since the entirety of
the data is not available until the end of the computations, the snapshot matrix
is formed incrementally by expanding it after each time step by the recently
computed results. Let the snapshot matrix up to time step n be denoted as
An =

[
a1 a2 . . . an

]
∈ Rp×n. If the solution an+1 of the subsequent time step

is available, the update of the snapshot matrix is done by

An+1 =
[
An an+1

]
∈ Rp×(n+1). (4.3)

Overall, the procedure has a low extra computational effort. However, with
respect to industrial applications which often involve small time steps and large
computational grids [3] the snapshot matrix has a memory consumption too high
to be stored in the main memory. Thus, the slower levels of the memory hierarchy
must be resorted to such that the update might be inefficient due to memory
bandwidth limitations caused by this circumstance [14]. Further, the memory
requirements of the snapshot matrix might also exceed the maximum capacity of
the system making it impossible to store the full snapshot matrix.

In the following, two possible approaches to circumvent the storage problem are
briefly discussed. The first approach directly reduces the storage overhead by
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saving not the whole solution but only at a small subset of c selected time steps,
the so-called checkpoints [4], viz

A =
[
an1 an2 . . . anc

]
∈ Rp×c , with {ni : i ≤ c} ⊂ {n ≤ q}. (4.4)

The neglected time steps are then reconstructed by restarting the primal calcu-
lation from the checkpoints [15]. If old checkpoints are no longer needed to be
available for the adjoint problem they can be replaced by new checkpoints cre-
ated in the recalculation process. On the one hand, the reduction of saved time
steps leads to a significant reduction in memory requirements, but on the other
hand this also increases the computational effort. This penalty can be reduced
by minimizing the number of recalculations utilizing the binomial checkpointing
algorithm proposed in [16]. In Summary, the checkpointing techniques trades
computational effort for memory [14].

In contrast to checkpointing, the second approach aims to bypass the memory
problem without the computationally expensive recalculations. Here, the snap-
shot matrix is not leaned by ignoring time steps in the storage process. Instead,
the snapshot matrix is replaced by a low-rank approximation that fulfills the un-
derlying memory requirements. According to the Eckart-Young Theorem 3.1.7
the optimal low-rank approximation of rank t ≤ p, q with respect to the 2- and
Frobenius-norm is obtained by its rank-t truncated SVD

A = UΣV T ≈ UtΣtV
T
t = At (4.5)

with Ut ∈ Rp×t,Σt ∈ Rt×t and V ∈ Rq×t. Thus the adjoint problem does not rely
on the primal field stored in the snapshot matrix but on a low rank approximation
of it. The impact of the approximation quality, controlled by the number of
considered singular values, will be investigated in chapter 5.

In order to calculate the tSVD, standard algorithms require access to the associ-
ated matrix [3]. This would imply that for the memory reducing approximation
the memory intensive snapshot matrix must be available. This contradicts the
original idea. The method presented in the following is inherently inspired by the
incremental updating of the snapshot matrix, but replaces the matrix from the
start by the approximation. Thus, an incremental update step is carried out by

An+1 =
[
Un
t Σn

t V
n
t
T an+1

]
∈ Rp×(n+1). (4.6)

Consequently, the approximation is updated at each time step using the new
solution of time step n + 1. However, the update shown in Eq. 4.6 is no longer
a tSVD and does not benefit from its properties described in section 3.1. Here,
this issue is obviated by relying on the findings of the additive modification of
an SVD of section 3.2. The update of the approximation can be treated as
a additive column adding rank-1 modification of a tSVD presented in Remark
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3.2.4 and 3.2.5. The resulting update of the so-called incremental truncated SVD
(itSVD) can then be computed by

An+1 ≈ Un+1
t Σn+1

t V n+1
t

T Alg.2←−
[
Un
t Σn

t V
n
t
T an+1

]
. (4.7)

This incremental updating leads to the availability of the approximation of the
snapshot matrix at the end of the calculation of the primal flow, without the
necessity to buffer more than one column simultaneously. Under the assumption
that this column needs a minor amount of memory the itSVD reduces the number
of stored entries from pq to r(p+q+1). This results in a mayor decrease of memory
consumption if r � p, q.

After the reduced flow is stored in the form of the itSVD and thus not directly
accessible, it must be recovered for adjoint computation. The complete extrac-
tion of the snapshot matrix would again lead to the known problems, hence an
incremental evaluation is carried out by

an = A(:, n) ≈ At(:, n) = ant = UtΣtVt(n, :)
T (4.8)

within a computational complexity of O(t(p+ 1)) since Σt is a diagonal matrix.
The overall resulting optimization framework based on the flow field approxima-
tion by means of the itSVD is depicted in algorithm 3.

Algorithm 3 Optimization Framework with itSVD

Require: Initial shape c0

1: i = 1
2: while i ≤ imax do
3: n← 1
4: while n ≤ q do
5: an ← solution of primal problem in Eq. 2.1 at time tn in ci

6: Un
t Σn

t V
n
t
T Alg.2←−

[
Un−1
t Σn−1

t V n−1
t

T
an
]

7: n← n+ 1
8: end while
9: n← q
10: while n ≥ 0 do
11: ant = UtΣtVt(n, :)

T

12: Solve adjoint problem Eq. 2.6 at time tn in ci

13: n← n− 1
14: end while
15: Compute surface sensitivity according to Eq. 2.8
16: Update shape to ci+1 using the steepest decent method
17: i← i+ 1
18: end while
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In common to checkpointing, the idea of memory reduction through approxima-
tion by means of the itSVD also introduces extra computational cost. However,
in this case, these costs are mainly incurred in the construction instead of in the
recalculation of the primal solution. Therefore, they do not depend on the com-
plexity of the underlying solver and the number of checkpoints as in the case of
checkpointing, but purely on the costs associated with the itSVD itself. Remark
3.2.8 shows that these costs are in turn determined by the size of the snapshot
matrix and the quality of the approximation expressed by the rank of the itSVD.
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4.2 Extensions

This chapter presents possible extensions to the itSVD algorithm to further re-
duce the memory consumption or enhance the performance. In this context, the
focus is on the construction of the reduced flow field since this determines the
amount of storage needed and accounts for most of the computational effort.

For this purpose, the incremental updating is first investigated in more detail
for its efficiency. Next, an adaptive rank determination is discussed allowing the
minimal required memory consumption to be used for a given accuracy. Finally,
a method to parallelize the itSVD with respect to the FresCo+ parallelization
procedure is outlined.

4.2.1 Incremental Bunch Update

The incremental rank-1 update of the truncated SVD in Eq. 4.7 appears to be at
first the most intuitive approach in case of a time step based solution algorithm.

However, utilizing this ansatz the matrix-matrix multiplications in Eq. 3.17 and
Eq. 3.18 have to be performed repetitively in each time step. Thus as prescribed
in Remark 3.2.6 this repetitive matrix operations cause the method to be sensitive
to numerical error unless appropriate countermeasures are taken. Besides this
Remark 3.2.8 states that the main computational effort of the iSVD method
results out of these matrix operations. Thus the rank-1 update can yield to a
computational overhead.

Therefore, it is desirable to avoid or at least reduce these multiplications if pos-
sible. A strategy to achieve this is to reduce the total number of itSVD updates
during the primal flow calculation. This can be accomplished by substituting b
rank-1 updates by one rank-b update. For this purpose, the b successive solu-
tions after the n-th update are buffered in the so-called bunch matrix B, which
is defined as

B =
[
an+1 · · · an+b

]
∈ Rp×b. (4.9)

The bunch matrix is then processed in one update according to

An+b =
[
An B

]
≈
[
Un
t Σn

t V
n
t
T B

]
. (4.10)

Similar to the rank-1 update, the result of this matrix expansion would not
constitute an SVD and destroys the approximation property. But again, the
update can be understood as the additive modification of the underlying matrix
given by[

An B
]
≈ Un+b

t Σn+b
t V n+b

t

T Th.3.2.1←−
[
Un
t Σn

t V
n
t
T 0

]
+B

[
0 I

]T
. (4.11)
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Thus the tSVD is only updated every b-th time step incrementally. The presented
algorithm 4 here is executable for an arbitrary number of buffered solutions.

Algorithm 4 Incremental Bunch-b Update of itSVD

Require: q, b ∈ N
1: B ← [ ]
2: for n=1,q do
3: an ← solution of primal problem in Eq. 2.1 at time tn
4: if #columns(B) = b then
5: Update itSVD according to Eq. 4.11
6: B ← [ ]
7: else
8: B ←

[
B an

]
9: end if
10: end for

Yet, for practical applications the choice of the bunch matrix size has a significant
impact on the memory consumption and the execution time. Therefore this
impact is discussed in the following. The main motive of the bunch update is to
reduce the computational effort by decrease the frequency the itSVD algorithm
has to be performed. For the investigation let t1 and tb denote the time needed
for the construction of the whole approximation of the snapshot matrix with a
rank -1 or rank-b scheme, respectively. Also let the average computation time to
perform onbe incremental update be given by ti1 and tib. Then the connection of
the computational effort of both methods can be expressed by

tb ≈
t1
b

+
q

b

[
tib −

ti1
b

]
. (4.12)

Here, the first term of the right hand side (RHS) represents the performance
enhancing that results of the decrease of the update frequency. The term de-
creases linearly with respect to the size of the bunch matrix. The second term
indicates the penalty of carrying out a rank-b instead of a rank-1 update. The
additional costs arise mainly in the calculation of the inner SVD of the matrix K
Eq. 3.12. According to Remark 3.2.8, the complexity of that calculation is cubic
with respect to b. As a consequence, the choice of a bunch matrix that is exces-
sively large leads to the second term dominating and affecting the performance.
Furthermore, a disproportionately sized bunch matrix also affects the memory
requirements. The maximal storage requirement for b buffered solutions is given
by

MEMrank-b = MEMrank-1 +MEM(B) =
t(p+ q + 1) + bp

pq
. (4.13)
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In order to keep the influence of the bunch matrix on the memory requirements
and the additional computational effort of the update as small as possible, the
choice of b� t is suggested.

4.2.2 Adaptivity Techniques

In the previous chapters the rank of the approximation was taken as granted,
but in the subsequent chapter the choice of the rank will be discussed in more
detail. According to Theorem 3.1.7, the number of singular values determines the
accuracy of the approximation. In the following it is therefore the goal to select
the optimal number of singular values in order to approximate the primal flow
sufficiently well. In order to determine the quality of the approximation, error
norms and heuristics are used. However, no a priori rules are available to specify
an optimal rank before the simulation [17]. A naive approach is to compute an
approximation with high accuracy and then reduce it according to the chosen
error bounds. But this contradicts the main objective of memory efficiency of
the previous chapters. Also a coarse simulation with larger time steps to record
the general behavior of the flow field could be computed in order to estimate the
rank based on these results. Yet, this requires additional computational effort and
does not guarantee the choice of an optimal rank. In the following, an approach
is presented that identifies the necessary rank of the SVD on the fly and thus does
not require any prior knowledge about the desired flow field. According to this
approach, the rank and thus the memory requirement is not known in advance,
but this method can be applied universally and guarantees the compliance with
previously defined error bounds under the assumption of no numerical error. The
problem of the unknown memory demand can be solved by defining a maximal
rank.

The approach exploits the fact that the update of the SVD is incremental. This
allows to adapt the required number of singular values to the defined error norms
in each step. In more detail, for a rank-1 update of a rank-t tSVD, this means
that it is examined whether the updated tSVD requires t or t+ 1 singular values
to satisfy the error bounds. This can be generalized for a bunch b-update by
determine the rank l such that

argmin
t≤l≤t+b

ε(l) ≤ εbound (4.14)

where ε(l) denote the error of the updated SVD with rank l and εbound the upper
error bound. As this minimization is performed at each update, the approxima-
tion of the snapshot matrix is guaranteed to have the minimal required rank.

Subsequently, the error bounds are presented, that are used in this work for rank
determination. It is important to note that although the focus is on comparing
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the snapshot matrix to the approximation, this matrix is not directly available.
Therefore, measures are chosen that do not require its direct presence. Addition-
ally, it is mandatory that the computation of the error consumes only negligible
computational effort. The first approach is to consider the relative error of the
approximation given by

ε1(l) =
||A− At(l)||
||A||

=


σl+1

σ1
, for || · ||2√∑r

i=l+1 σ
2
i∑r

i=1 σ
2
i

, for || · ||F
(4.15)

where At(l) denotes the approximation by the tSVD of rank l and r the rank of
the snapshot matrix. Here, the main advantage is that both norms only requires
the singular values to be available and not the matrix. However, only the first t+b
singular values are known during the update. Thus to use the Frobenius norm
directly is rather impractical for the adaptivity method since t+ b� r. Also the
singular value σt+b+1 which is needed to evaluate the spectral norm for l = t+ b
is unknown. This is not an obstacle, since this evaluation is not necessary in
practice. The reason is that if the error condition is not fulfilled for l = t+ b− 1,
the maximal number of singular values, i.e. l = t+ b, is automatically used.

A further approach that is often used in practice is based on the retained energy
η presented in Def. 3.1.8. The basic idea is to observe the ratio of the energy of
the approximation to the energy of the full system [17]. But the control of this
ratio contradicts the minimization approach of Eq. 4.14, due to the fact that the
retained energy rises with increasing number of singular values. Therefore, it is
not the obtained energy that is considered in the following, but its complement
the energy lost by the approximation. This is set by

ε2(l) = 1− η(l) = 1−
∑l

i=1 σ
2
i∑r

i=1 σ
2
i

(4.16)

where η(l) denotes the energy retained if l singular values are used. Similar to
the Frobenius norm, also in this error metric all r singular values are required to
evaluate it. However, a significant decrease in the value of the singular values is
assumed, so they are of minor importance. Consequently, the lower bound ηlower
introduced in Remark 3.1.9 is applied to estimate the retained energy. This yields
to

ε2(l) = 1− η(l) ≥ 1− ηlower = 1−
∑l

i=1 σ
2
i∑t+b

i=1 σ
2
i + (r − (t+ b))σ2

t+b

. (4.17)

This procedure guarantees that not less than the minimum number of required
singular values are used, but does not exclude an overestimation. Given the
previously made assumption of the singular value progression, the bound can
lead to a sufficiently good result even with a small number of singular values.
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Algorithm 5 Adaptivity Technique

Require: Ut ∈ Rq×t+b, Vt ∈ Rq×t+b, Σt ∈ Rt×t+b

1: l← t
2: for i = t, t+ b− 1 do
3: if ε(i) > εbound then
4: l← i+ 1
5: end if
6: end for
7: Ut ← Ut(1 : p, 1 : l)
8: Vt ← Vt(1 : q, 1 : l)
9: Σt ← Σt(1 : l, 1 : l)

4.2.3 Parallelization Techniques

In this chapter, an approach for the parallelization of the itSVD is investigated.
The goal is to align this routine with the parallelization of the associated finite
volume solver, such that their interaction can be implemented as efficiently as
possible. For this purpose, the parallelization approach of the solver is presented
in short.

The FresCo+ algorithm is parallelized using a domain-decomposition technique
based on a Single Instruction Multiple Data (SIMD) message-passing model. So
every process executes the same program instructions on its subset of the domain.
The algorithm also provides a load balance. Consequently, the solver divides the
domain Ω into k disjoint partitions Ωi such that

Ω =
k⋃
i=1

Ωi , with |Ωi| ≈ |Ωj| and Ωi ∩ Ωj = ∅ ∀i, j ≤ k. (4.18)

Here it is assumed that the number of processes coincides with the number of
partitions.

A combination of this procedure with the serial implementation of the incremen-
tal update by means of the itSVD would require that the necessary data of all
processes must be sent to one process, where the tSVD is then updated. De-
pending on the number of processes and the size of the data, this would lead to a
throughput overhead. A parallelization approach that builds on this ansatz and
parallelizes by distributing the data back to the processes will further exacer-
bate this problem. Here the communication between the processes is the limiting
factor.

Instead, an approach is presented that, like the solver itself, is based on the idea
of the SIMD architecture and eliminates the need for communication between the
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processes during the update of the reduced flow. For this, a dedicated snapshot
matrix Ai is defined for each partition Ωi by

Ai =
[
a1
i a2

i · · · aqi
]
∈ Rpi×q (4.19)

where ani with 1 ≤ n ≤ q and 1 ≤ i ≤ k contains the primal solution for all finite
volumes in Ωi. Further pi denotes the number of cells in Ωi with

∑k
i=1 pi = p and

pi ≈ p/k ∀i ≤ k.

Rather than approximating the snapshot matrix A, the approximation of each
matrixAi can then be constructed independently according to the update routines
presented in chapter 4.1 and 4.2.1. This yields to

Ai ≈ Ati = UtiΣtiVt
T
i (4.20)

with Uti ∈ Rpi×q, Σti ∈ Rt×t and Vt
T
i ∈ Rq×t. The index i in the approximation

indicates the affiliation to the partition. Overall, this translates to the replace-
ment of the computation of the approximation of the matrix A ∈ Rp×q by k
computations of the approximations Ati ∈ Rpi×q.

This distribution and the circumstance that the approximations Ati can be com-
puted simultaneously on the associated processes have a significant impact on
the computational effort required by the method. Hence, the modification of the
number of rows of the matrix At from p to pi ≈ p/k for Ati leads to that the
matrix Uti also has approximately p/k rows. This has the consequence that the
effort of updating the matrix Uti from Eq. 3.17 decreases linearly with k. Ac-
cording to Remark 3.2.8 and the assumption that the number of finite volumes
significantly exceeds the number of time steps, this operation occupies the main
share of the computational effort and consequently a considerable performance
increase is to be expected. If it is further expected that due to the reduced size of
the matrix to be approximated fewer singular values are needed, this additionally
decreases the computational effort.

Besides, this kind of parallelization of itSVD also impacts the memory consump-
tion. Since this is the main objective of the overall approximation approach,
a significantly higher memory consumption would be unacceptable and would
severely constrain the method. The memory consumption in form of the total
number of stored entries is in the parallel scenario given by

MEMparallel =
k∑
i=1

t(pi + q + 1)
pi≈p/k≈ t(p+ k(q + 1)) (4.21)

since the spatial domain can be split into partitions but the time domain cannot.
Given the previously established assumption that the number of finite volumes
significantly exceeds the number of time steps p � q, the additional memory
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overhead is a reasonable trade-off for the high performance benefits. Further
the application of the adaptivity techniques presented in chapter 4.2.2 to each
subdomain approximation can yield to an optimal exploitation of memory.



Chapter 5

Numerical Results

In this chapter the results of the application of the incremental truncated SVD to
the construction of a reduced flow field are discussed. In this context, the impact
of this approach on the optimization process is examined in more detail. For
this purpose, the approximation algorithm was integrated into the in-house finite
volume based solver FresCo+. The solver is capable of solving both the primal and
adjoint equations on structured and unstructured meshes and moreover can deal
with multiphase flow problems. In addition, it has built-in routines to calculate
the shape gradient and the mesh deformation for shape optimization based on
gradient-based methods.

The tSVD construction was implemented into the solver routine with minimal
interfaces such that their functionalities are not affected. According to Algorithm
3, the only interaction is the reading and writing of the primal flow. Beyond that,
the algorithm acts independently.

5.1 Flow Field Reconstruction

In this section, the itSVD algorithm is tested on the laminar flow around a
circular cylinder. This is a well documented scenario and the expected periodic
behavior for a sufficiently large Reynolds number is ideal for testing the itSVD
approximation approach to the unsteady adjoint-based optimization [3]. Thereby,
the time periodic von-Karman street is developed, inducing a periodic force on
the cylinder surface.

In this study, the inflow velocity u1 = 0.2 m/s, the kinematic viscosity 10−5 m2/s
and the diameter of the cylinder D = 0.01 m were chosen such that the Reynolds
number Re = 200 is obtained. For the simulation a 2D computational grid is
used, which covers the physical domain [−100D, 100D]× [−50D, 50D]. Here, the
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center of the cylinder is [0 m, 0 m]. In order to observe the physical phenomena,
the area [−5D, 30D]× [−3.5D, 3.5D] is resolved finer. In addition, the immediate
area around the cylinder receives further refinement, as this is the area of greatest
interest with respect to upcoming optimization. This yields that per time step
approximately p ≈ 3.3 · 105 data points have to be stored.

In contrast to the spatial domain, the time domain is resolved equidistantly with
a time step size of ∆t = 10−3 s. For the simulation of 103 time steps this results
in the time interval [0s, 1s]. However, since the periodic behavior of the flow
is developed over time, prior to the simulation another 5 · 103 time steps are
calculated, allowing the periodic behavior to evolve. Subsequently, the result of
the last time step is used as the initial condition for the simulation. Thus, merely
the desired periodic behavior is captured by the itSVD.

The following sections deal with the numerical results of the approximation ap-
proach proposed in chapter 4.1. For this purpose, the method is first examined
in general terms for approximation quality and performance with respect to the
memory consumption. Afterwards, the effects of the extensions proposed in the
chapter 4.2 are examined, also for the same criteria.

5.1.1 Approximation Quality

This section investigates the numerical results of the approximation of the pri-
mal velocity field using the rank-1 itSVD method and benchmarks it against the
exact representation. The number of finite volumes was chosen such that the
memory requirement of the full solution does not exceed the maximum capacity
of the system. Regarding the storage, it should be noted that due to the size of
the snapshot matrix, it cannot be stored in the main memory. Thus, accessing
the snapshot matrix takes more time than accessing the approximation, which is
stored in the main memory. In the following, the effects of the memory consump-
tion on the approximation method are examined. Here it is to be emphasized that
the memory consumption is proportional to the number of singular values. In
this case, this is reflected by the fact that 1% memory consumption corresponds
to approximately 10 singular values.

The first insight into the quality of the approximation is obtained due to the
comparison of the primal and the reconstructed reduced primal field. Therefore
snapshots of the fields are presented in Fig. 5.1 at t = 0.5 s and t = 0.9 s.
Additionally, the absolute approximation error per finite volume is shown. The
used approximation requires approximately 2% of the memory of the exact field.

The results indicate that the approximation can replicate the general velocity
profile with high accuracy at both time points. Here, the vortex shedding
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Figure 5.1: The primal flow field (top) in contrast to the reduced primal flow
field (mid) and the absolute error made per finite volume (bottom)
for t = 0.5 s (left) and t = 0.9 s (right).

characteristic for this scenario is reproduced in detail by the reduced model.
A difference of both flows is first revealed by the absolute error plot. This
illustrates that the main part of the inaccuracy of the approximation occurs
in the representation of von-Karman vortex street, while the far field has a
negligible error most of the time. Indeed, this is due to the fact that the far field
is almost constant in time and thus can be represented with high accuracy with
few singular values. The vortex street, on the other hand, exhibits an unsteady
behavior, requiring more singular values to fully capture this time-varying
nature. It is due to the periodicity of the vortex shedding that the behavior can
be reproduced successfully with a small amount of singular values.

After having illustrated the general behavior of the low-rank reduced flow
field, the approximation property is examined in the following by comparing the
snapshot matrix A and its approximation At = UtΣtV

T
t . Here, the development

of the relative error when changing the memory requirement of the approxima-
tion is relevant. The results of the investigation are depicted for the spectral
and Frobenius norm for a memory requirement up to approximately 15% in
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Fig. 5.2 (left). The courses of both norms exhibit a similar behavior, whereby
the errors decrease sharply at the beginning, but the trend starts to flatten
out starting at a memory consumption of approx. 4-5%. This implicates that
an approximation with a relative error of the order of magnitude 10−4 can be
obtained with a low memory consumption and thus can adequately replicate the
primal flow. However, the error profile also reveals that if higher accuracy is
required, disproportionately more memory is needed to achieve it.

The second measure to evaluate the quality of the approximation is the amount
of lost energy depending on the memory consumption. The result is presented in
Fig. 5.2 (right). This evaluation confirms the observations of the relative error.
Also here the steep decrease at the beginning and the reduction of the slope at a
memory consumption of about 5% can be observed. At a memory consumption
of 5%, 99.99% of the total energy is obtained. A further increase of the obtained
energy leads here also to a highly enhanced memory load.
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Figure 5.2: The relative error of the approximation in spectral and Frobenius
norm and the amount of lost energy by the approximation with re-
spect to memory consumption.

Besides the evaluation of the approximation of the snapshot matrix, the analysis
of the tSVD resulting from the incremental approach is also of interest. This
is justified by the fact that the incremental updating procedure makes the con-
struction sensitive to numerical errors. If this caused a significant deterioration of
the tSVD, the optimal low-rank approximation postulated by the Eckart-Young
Theorem 3.1.7 could not be guaranteed. Therefore, the deviation of the incre-
mental tSVD from the tSVD calculated from the snapshot matrix is investigated.
For this purpose, Theorem 3.1.2, proving the uniqueness of the singular values of
a matrix, is used and the difference between the singular values of both tSVDs
is considered. Fig. 5.3 shows on the left side an exemplary representation of
the singular values for an approximation with 150 singular values of both tSVD.
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The comparison reveals that the singular values are almost identical, with the
exception of the smallest singular values. Here, those of the tSVD are smaller
than those of the tSVD.

Beyond the examination of the variation in the singular values, the general de-
velopment of the singular values can provide a foundation for understanding the
error curves shown in Fig. 5.2. The course of the singular values displays the al-
ready known course of an initial sharp decrease, which flattens out in the further
progress. By means of the energy definition this can be interpreted that the first
singular values contain this major part of the total energy and thus determined
substantially the approximation behavior. The following sharp decrease suggests
that the subsequent singular values contain a low amount of energy and therefore
provide a moderate contribution to the approximation quality. Thus the inaccu-
racy in the smallest singular values is relatively insignificant. However, it should
be noted that this can affect the evaluation of the error norms and the retained
energy.

In addition, the relative error of the singular values with respect to the size of
the tSVD is given on the right side in Fig 5.3. It is calculated as the error
of the singular value vectors defined by σSV D = (σi)i ∈ Rt in the Euclidean
norm. The evaluation indicates that the error decreases with increasing size of
the itSVD. Also in this case, the error decreases steeply initially, followed by a
gradual decline. This indicates that the sensitivity to numerical errors of the
itSVD is directly related to its size. The results of the singular value progression
can justify it. It was pointed out exemplarily that the itSVD and the tSVD
distinguish in their smallest singular values. Therefore, the more singular values
an approximation considers, the smaller are the differing singular values and thus
the less is its effect on the error and vice versa.
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Figure 5.3: Comparison of the singular values of itSVD to those of the ordinary
tSVD.
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5.1.2 Performance

After having previously investigated the approximation property of the itSVD,
this chapter tests the itSVD algorithm for its computational cost. For this pur-
pose, the relative additional computational effort that arises when the itSVD is
performed instead of storing the full snapshot matrix is examined. The extra
computational effort is determined by the time factor

TF =
titSV D
tfull

, (5.1)

where titSV D and tfull denote the execution times of the corresponding cases.
Since the snapshot matrix is fixed tfull is constant while titSV D varies with respect
to the rank of the approximation. In order to provide comparability of the results,
all computations were performed on the same computer. In addition, each test
was performed 5 times to reduce the effect of external influences.
The result of this investigation is illustrated in Figure 1. The development of the
time factor reveals a polynomial growth with increasing memory requirements of
the itSVD. Already a memory requirement of the SVD of 5% causes a duplication
of the runtime. At the maximum, the computation time is increased to a factor of
more than eight for 15% memory consumption. This demonstrates that the itSVD
loses its characteristic of an efficient approximation construction rapidly and is
only conditionally suitable for practical applications. In applications that require
a higher resolution approximation, relying on alternatives such as checkpointing
might be appropriate. Therefore, the extension of the bunch updated itSVD,
which promises a more efficient approach, is discussed below.
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Figure 5.4: Performance of the itSVD with respect to its memory consumption.
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5.1.3 Incremental Bunch Update

The incremental bunch update was introduced as an extension of the itSVD al-
gorithm in chapter 4.2.1. It was motivated due to the reduction of the numerical
error and the computational effort of the method in comparison to the classical
rank-1 update. The objective of this chapter is the verification of these state-
ments.

Therefore, the error development for different bunch sizes are analyzed first.
This is followed by a review of the computational effort. The bunch sizes
b ∈ {1, 2, 5, 10} have been considered.

The relative error of the approximations with respect to the bunch size is pointed
out for different memory requirements in Fig. 5.5. The plot of the Frobenius
norm (left) as well as of the spectral norm (right) implicate that the bunch update
preserves the general error pattern, but a decrease of the update frequency reduces
the relative approximation error. Yet, this reduction is small and the quality is
only improved marginally. Considered in isolation, this provides no incentive to
apply the bunch update.
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Figure 5.5: Relative Error of approximation with respect to bunch size.

But besides the relative error, the amount of lost energy and the quality of the
tSVD, measured by the relative error of the singular values, are also relevant for
the evaluation. Thus Fig. 5.6 illustrates these quantities for different bunch sizes
as a function of memory. The trajectories of the lost energy indicate that the
choice of a update with larger bunches influences the error course only by small
variations. In contrast to the relative error, where a larger bunch reduces the
error, in this case it causes an increased amount of lost energy. This variation is
inherent in the observation that increased bunch sizes mostly lead to a decrease
in the error of the singular values. The error plot of the singular values shown
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in Fig. 5.6 (right) proves this behavior. As a result, the underestimation of the
singular values due to itSVD revealed in Fig. 5.3 diminishes and yields a more
accurate estimate of the lost energy. This also suggests that, in the case of an
adaptive approach, the bunch update could translate into better maintenance of
the energy limit. The error of the singular values in Fig. 5.6 shows that in most
cases there is a reduction of the error with an increase of the bunch size, but the
error progression for each bunch size is not monotone. Further it is observed that
the error in singular values is higher for big bunch updates when a low amount
of energy is used.
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Figure 5.6: Lost energy and relative error of singular values with respect to bunch
size.

Overall, it has been shown that a bunch update can marginally reduce the er-
ror. However, this alone does not give much incentive to its application. For
this reason, the performance depending on the bunch size is investigated in the
following.

According to the definition in Eq. 5.1, the performance of the bunch update is
determined by the time factor. The test setup is identical to that of the classical
itSVD algorithm. Fig. 5.7 presents the results of the bunch updated itSVD in
relation to the memory usage. The effort of computing an itSVD with moderate
memory requirements can be performed by all tested update sizes with minimal
additional effort. In this interval, no bunch size can be identified as preferable
to the others. With increasing size of the itSVD, the significantly deviating
progressions implicate a distinct dependency of the computation time on the
size of the bunch matrix. Furthermore, the performance developments for the
tested bunch sizes confirm the relationship postulated in Eq. 4.12 between the
computation time of the classical and the bunch update. Thus, the time required
for the larger update prevents the computation time from being reduced linearly
and decreases the performance gain for larger bunch updates.
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Figure 5.7: Performance of the itSVD with respect to bunch size.

In summary, the bunch updated itSVD provides a most effective method for
reducing the computational time to construct the approximation. In contrast
to the classical itSVD, the approach yields practically reasonable computation
times and is classified in this work as an essential extension of the itSVD that
ensures efficient computation. The additional improvement in approximation
quality should also be emphasized, but its contribution must be considered minor.

5.1.4 Adaptivity Techniques

In this section, the adaptive extension of itSVD presented in chapter 4.2.2 is
applied to the test problem and based on the results, its benefits are discussed.

Here, this investigation is limited to the consideration of a single error bound such
that the adaptive behavior of itSVD is uniquely determined by it. Furthermore,
setting multiple bounds on a prior unknown problem provides an increased po-
tential that resources will be wasted. It is not known a priori how various bounds
are related to each other, thus an intuitive specification is difficult. Therefore,
only a bound for the amount of lost energy is set, since it can provide an intuitive
interpretation for the approximation of the physical problem. A more relaxed
bound for the relative error in spectral norm could also be set to guarantee a
minimum level of approximation quality. However, this is not done in this work.

The adaptive approach is characterized by determining the optimal number of
singular values to satisfy the error bound in each update step. Therefore, the
evolution of the number of singular values with respect to the time steps is in-
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vestigated in the following. Fig. 5.8 shows the results for several energy bounds.
Here it is still valid that 10 singular values correspond to approximately 1%
memory.
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Figure 5.8: Evolution of the size of the itSVD with respect to energy bound.

The results indicate that if a minimal amount of energy is demanded, the size
of the itSVD is variable over the entire time course and is subject to frequent
adjustments. The progression can be approximately divided into 2 phases. At
the beginning of the calculation, setting a high energy bound results in a rapid
increase of considered singular values. But this growth decreases with time and
after a certain point of time the number of considered singular values remains
almost constant in the further course. The more demanding the energy require-
ment, the later this behavior occurs. This behavior in the second phase is due to
the periodicity of the model problem, since after a certain time step the newly
calculated solution vectors can be sufficiently well approximated by the already
existing itSVD, since similar information has already been processed earlier. In
case of a high energy conservation already a small deviation of the new solution
vector can violate the prescribed limit, such that an increase of the rank must
take place in order to comply with it and thus the consideration of almost con-
stant number of singular values occurs later.
Besides the temporal course of the number of singular values, the results show
large differences of the total number of singular values with respect to the en-
ergy requirements. It can be concluded that maintaining a 90% bound is slightly
more demanding than maintaining a 50% threshold and achieving an increase of
the minimum energy by 40% requires 50% more singular values. On the other
hand, the effort required to achieve an enhancement in the high energy range
increases strongly. An improvement starting from retaining 99.9% of the energy
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by 0.099% results here in a doubling of the required singular values. Thus, the
previously described fact that the largest part of the total energy is stored in a
few singular values and that the following ones have a diminishing influence can
be demonstrated.
It was shown that the choice of the energy bound has a significant influence on the
number of singular values, especially at high boundaries, and that small changes
can have large effects. In the following it is examined how this affects the rel-
ative error of the approximation. Therefore, Fig. 5.9 presents the relationships
between the energy bound and the relative approximation error.

50 55 60 65 70 75 80 85 90 95 100
10

-4

10
-3

10
-2

10
-1

Figure 5.9: Relative error of approximation with respect to energy bound.

The evaluation reveals that the error in both the Frobenius and the spectral
norm is practically constant up to an energy boundary of 90%. Thereafter, it
commences to decline. The largest reduction takes place above 99% of the ob-
tained energy. Hence, it is recommended from a practical point of view to set
energy thresholds that allow at most the loss of a few percent of the energy.

In conclusion, the analysis indicated that the adaptive algorithm provides a
method to satisfy an energy constraint in a memory-efficient fashion without prior
specification of the rank of the tSVD. It was shown how the approach benefits
from the periodicity of the flow field. Also, a relationship between the amount
of retained energy and the relative error could be described for this test case.
Nevertheless, it can be expected that this relation is problem specific and thus,
when applied to further problems, the choice of an appropriate energy bound can
pose a challenge.
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5.1.5 Parallelization Techniques

The parallelized itSVD algorithm is examined in this section. The focus is on
the impact of the number of partitions on the memory requirement, the ap-
proximation error and the computation time. Since the primal solution of each
partition is approximated by a separate itSVD and the solution behavior varies
across partitions, it is expected that if a fixed rank is chosen for all partitions,
the approximation quality will also differ. This yields an inefficient exploitation
of the available storage capacity. Therefore, the adaptive rank determination is
applied. The results shown in section 5.1.4 implicate that an energy bound of a
minimum of 99.99% has a sufficiently good approximation quality. Hence, this
bound is applied here.

The influence of the number of assigned partitions on the memory consumption
and the approximation error are presented in Fig. 5.10. Here on the one hand the
mean value and on the other hand the quantities for each partition are displayed.
The partition evaluations are marked by diamonds. In the representation an
overlapping can occur, such that the visible number of evaluations may differ
from the number of partitions.
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Figure 5.10: Memory consumption and relative approximation error with respect
to the number of partitions.

The presented mean memory consumption implicates that splitting the domain
into several partitions with the same requirement for the amount of retained en-
ergy promotes a memory reduction. The increasing deviation of the individual
evaluations from the mean value when multiple partitions are considered provide
an indication of a potential source for this phenomenon. As shown in Fig 5.1,
the complexity of the primal velocity field in the computational domain varies in
different areas. Progressively splitting the domain into partitions benefits these
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complexity differences to be accounted for in each itSVD. Thus, a simple domain
can be approximated with low memory requirements and a memory intensive
approximation can be set up for a more complex domain. As the result demon-
strates, this yields an altogether lower memory consumption on average.
A similarly positive result can be observed for the error trend with an ascending
number of partitions. Taking into account the results from the memory investiga-
tion, it can be concluded that the increase in the number of partitions reduces the
relative approximation error, while less memory is required. There are two po-
tential reasons for this behavior, one could be the different relation of the energy
bound to the relative error per partition as described in section 5.1.4. The other
is that due to the partitioning the orthogonal matrices of the itSVDs have fewer
rows such that according to remark 3.2.6 the update procedure is less sensitive
to numerical errors.

Besides the advantages of the parallelized itSVD in connection with the adaptive
rank determination regarding memory and error reduction, the impact on per-
formance has to be considered as well. In contrast to the previous performance
studies in which all configurations were benchmarked against the constant execu-
tion time of the solver, it is now variable and scales like itSVD with the number
of partitions. Additionally, it needs to be emphasized that for saving the full
solution, the dedicated snapshot matrices are saved individually like itSVD and
incrementally updated in parallel. The size of the approximations allows them
to be stored in main memory, while the exact snapshot matrices must be stored
on hard disk. Again, the performance is interpreted according to the time factor
defined in Eq. 5.1. The evaluation is shown in Fig. 5.11 with respect to the
number of partitions.

2 3 4 5 6 7 8

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Figure 5.11: Performance of the parallelized itSVD with respect to the number
of partitions.
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In contrast to the previous performance studies, in this case the time factors are
consistently less than 1. This implicates that the incremental construction of the
approximation takes less time than storing the full solution. Since the approxima-
tion definitely requires more computational effort than storing the full solution,
the read and write operations of the snapshot matrices stored on the hard disk
can be identified as limiting factors of this approach. Thus, the replacement of
memory by arithmetic operations yields to an increase in performance in terms
of the time factor.
In addition, the observed rise of the time factor with more partitions is due to
the fact that the solver of the primal problem scales better with the number of
partitions with respect to the execution time than the parallelized itSVD algo-
rithm.
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5.2 Optimization

In this section, the results of the application of the itSVD approach to the un-
steady adjoint-based shape optimization are presented and discussed. The op-
timization is carried out based on the procedure outlined in chapter 2. The
objective is to minimize the drag force utilizing the cost functional described in
Eq. 2.3. The itSVD is integrated into the solution process of the primal and
adjoint equations according to algorithm 3. Thereby, all three extensions of the
itSVD described in section 4.2 are employed for the incremental construction of
the approximation. The encountered parameters are chosen problem specific.

In this work, the approach is tested for two scenarios of different complexity.
First, the shape optimization is applied to the cylinder of the two-dimensional
model problem introduced in chapter 5.1. Since this model was chosen to be
compact, in this case the optimization based on the reduced primal field obtained
by the itSVD can be benchmarked against the optimization using the full primal
solution. The second test case is intentionally chosen to be more complex in order
to investigate the applicability to more realistic problems and to identify possible
limitations of the itSVD approach. Therefore a turbulent two-phase flow around
a 3D sphere is considered.

5.2.1 Laminar Flow around 2D Cylinder

Within this section, the shape optimization of a 2D cylinder using the reduced
primal velocity field is investigated. As a starting point, the scenario presented in
Section 5.1 is selected. This is a very suitable case for a first test of the developed
approach, because in addition to the data about the behavior of the reduced flow,
general information about the unsteady shape optimization exists as well. Here,
it is referred to the findings of [6]. These findings can serve as verification of
the unsteady fluid flow shape optimization process used here. This is necessary,
since the optimization routine of FresCo+ was originally designed for steady and
pseudo unsteady problems [1, 8], such that it had to be modified for this work.

According to algorithm 3, one step of the optimization can be divided into three
subsequent subproblems. First the primal problem is solved and its solution or
an approximation is stored, then the adjoint solution is calculated using this
information, and finally the shape is updated. In the following, the configuration
of each individual step is described.
In this case, the Navier-Stokes equations are solved in parallel by means of a
domain decompositioning to 8 partitions for 1000 equidistant time steps in the
time interval [0s, 1s]. The incremental creation of the reduced velocity field by the
itSVD included in this process is thus also applied to each partitions individually
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according to the parallelization approach of section 4.2.1 by using the bunch size
b = 10 in order to provide an efficient computation of the approximation also
in case of a larger itSVD. Furthermore, the approximation quality is adaptively
controlled by the amount of retained energy. The results of the reduced flow field
investigation showed that the maintenance of 99.99% of the energy represents a
reasonable trade-off between quality and memory consumption. In addition, the
optimization performance for poorer quality approximations has been studied to
highlight possible weaknesses if the adaptivity parameter is poorly selected.
Once the primal computation is complete and the reduced solution is available,
the adjoint problem can be solved. This has to be carried out applying the same
parallelization properties and the same grid of the primal computation to ensure
an unique mapping of the reduced primal solution. Then, the adjoint problem
can be computed backwards in time by evaluating the itSVD at the needed time
point. Here, the initial condition of the adjoint problem must be taken into
account. In contrast to the primal calculation, where the condition is determined
by a prior simulation allowing the periodicity to evolve, the initial adjoint velocity
is set to û = 0 at t = 1s. This leads the formation of the periodic behavior to
takes place in the considered simulation period. However, the optimization should
only consider the cyclic pattern of the flow such that this phase is neglected in
the optimization process. Therefore, it is not accounted for the shape update by
excluding it from the sensitivity calculation. In the present case, the examination
has shown that a periodicity in the adjoint velocity field begins after 200 time
steps, hence the sensitivity is calculated in the interval [0s, 0.8s]. However, due
to the periodic behavior of the primal flow, it can be expected that the drag force
will still be minimized over the whole time interval.

Subsequently, the deformation field can be determined and the shape updated
with respect to the resulting sensitivity. Here, in order to avoid larger defor-
mations of the mesh and the geometry, the received deformation di is scaled to
a user defined maximal deformation d̃max. This is done according to [8] by the
substitution of di by

d̃i =
di

max(di)
d̃max. (5.2)

In this study d̃max = 10−4m is chosen which corresponds to a maximal deforma-
tion of 1% with respect to the diameter of the initial shape.

The results of this optimization approach are presented and analyzed below. For
this purpose, the identical optimization is performed for different qualities of
the primal flow field. Besides the application of the exact flow field in form of
the snapshot matrix, the approximations with a minimum of retained energy of
50%, 75% and 99.99% are used. The exact flow field is described by a perfect
conservation of energy with η = 100%.
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The impact of the approximation quality on the minimization of the cost func-
tional and the memory requirements of each approximation during the optimiza-
tion process are illustrated in Fig. 5.12. The development of the cost functional
is indicated by the decrease in percent compared to the initial shape.
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Figure 5.12: Course of the cost functional and the memory consumption during
the optimization with respect to retained energy of approximation.

First, the exact optimization is examined. Here, the cost functional exhibits a
strong initial reduction, which weakens with increasing shape updates. At the
end of the iterations, there is no further relevant decline of the cost functional,
such that the optimization is considered to be converged at a reduction of ap-
proximately 63%. For the validation of the optimization and to prevent that the
decline is not caused by a phenomena that occurs due to the mesh deformation
the mesh of the last optimization step is properly rebuild and the last primal sim-
ulation is repeated on the new mesh. The new evaluation of the cost functional
differs in this case by less than 1%. Therefore, the optimization is assumed to be
mesh independent and thus valid .
Nevertheless, in the eighth iteration a rise in the cost function is evident, which
otherwise decreases monotonously. Since the exact solution field was employed in
this case, the error results immediately out of the shape optimization and can be
attributed to a suboptimal choice of the step size length. The choice of a smaller
d̃max could avoid this leap but at the same time results in a higher number of
required iterations. A variable step size rule could provide a cure for this. Since
this anomaly is independent of the approximation approach, it is expected that
similar jumps will occur for the optimization using the itSVD.
However, the evaluation of the cost functional of the optimization based on the
approximation with an amount of retained energy of 99.99% does not meet these
expectations. As in the exact case, the objective decreases sharply at the start,
whereupon the incline decreases and finally converges to approximately the same
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limit as the exact optimization. But there is no peak and the monotone decline
of the cost function, which is characteristic for a successful optimization, can be
observed over the entire shape iteration. Since both optimizations run almost
identically up to the eighth iteration, the abandonment of the peak can be at-
tributed to the exploitation of the reduced flow for the adjoint equations and the
sensitivity. Yet, it does not follow that the reduced optimization is inherently
superior to the exact optimization. In terms of the almost identical achieved re-
duction of the cost functional, the success of both approaches can be considered
equal.
Nevertheless, if the memory requirements are included in the comparison, the re-
duced approach is definitely preferable. The analysis of the memory consumption
in Fig. 5.12 (right) indicates that in this case, from an initial storage require-
ment of 2% to a maximum of 3.5% of the full storage is required. Moreover, the
results from Fig. 5.11 reveal that this approach yields a lower execution time.
In summary, if for the approximation a sufficiently high accuracy is chosen, the
reduced approach minimizes the cost functional as well as the full optimization
approach, but exhibits a significantly decreased memory requirement and is faster
at the same time. Anyhow, this conclusion does not hold without restrictions,
but depends on the choice of the approximation quality. The impact of a lower
approximation quality on the development of the cost functional is also shown in
Fig. 5.12 for the energy bounds 50% and 75%. It points out that also in these
cases the characteristic course of the objective is kept, but jumps appear more
frequently, which affect the optimization success and lead to a lower decrease of
the cost functional than in the cases treated before. Thereby, a greater amount
of retained energy leads to a better final result. Although the optimization in
these two cases leads to a lower reduction of the drag force, the differences are
small and taking into account that these cases use a maximum of about 1.5% of
the original memory, the optimization can still be regarded as successful.

After evaluating the optimization properties of the reduced flow field by means
of the cost functional, the real world implications on the shape of the solid and
the physical behaviors of the flow are investigated next. Based on the results of
[6], it is expected that the optimization minimizes the frontal area of the body
and squeezes it in the transverse direction to suppress vortex shedding. As a
consequence, the vortex shedding is substituted by a steady flow around the
optimized shape and a constant force on the body results.
For the purpose of examining whether the optimization approach used in this
work confirms these findings, Fig. 5.13 depicts the optimized shapes and the
optimized drag force compared to their initial states.
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Figure 5.13: Implications of the approximation quality of the reduced flow field
on the optimized shape and drag force.

Starting with the results of the optimization based on the full solution, the op-
timized shape elongated in the flow direction and compressed in orthogonal di-
rection confirms the expected transformation due to the optimization. Moreover,
the drag force profile indicates that the initial periodic force pattern becomes
almost constant in time. The inconsistent initial behavior is due to the preceding
shape update, such that the later time period is of more relevant in the analysis.
In addition, the examination of the inital force progression proves that the time
interval in which the drag force is optimized was chosen sufficiently large and
contains numerous periods. Thus, a larger time interval would lead to almost
identical results.
After the results of the exact optimization were validated by means of the results
of [6], the optimization results based on the reduced velocity field are compared
with the exact results in the following. The comparison of the cost functionals
reveals that a higher approximation precision leads to the convergence of the cost
functional of the approximation towards the exact objective. Next, it is examined
if the same holds for the optimized shapes and the resulting force trajectories.
Figure 4 indicates that although the cost functionals of the exact and reduced
cases with 99.99% energy are virtually identical, the shapes do differ to some
degree. The shape of the reduced case is marginally more elongated. The ir-
regularity in the update of the full optimization can be identified as a potential
source of this variation. Since it did not occur in the reduced case, it can be
assumed that the shapes begin to differ from each other at this point and tend to
converge towards the same shape only approximately. With regard to the force
profile, the differences in shape have only a marginal effect and especially in the
later course, the graphs prove to be congruent. In contrast to this optimization
with an approximation of high quality, there are significant deviations in the op-
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timized shape when a lower energy parameter is chosen. Although the overall
expected shape is preserved, the stretching in both cases is much less prominent
than in the optimization with the exact velocity field. Moreover, both shapes
are shifted in the negative y-direction, with the magnitude of the displacement
increases with lower approximation quality. Since due to the periodic force and
the large time interval a nearly symmetric deformation is expected and indeed
appears with an exact velocity field, this shift can be attributed to the failure of
the reduced velocity field to retain the time-averaged symmetry of the velocity
field. Despite the fact that the overall shape variations are substantial, the force
profile exhibits that towards the end of the simulation interval, the evaluation de-
viates only marginally from each other and every profile becomes approximately
constant. Therefore, all optimizations considered here based on reduced velocity
fields result in a significantly reduced and steady force acting on the solid.

Finally, Fig. 5.14 presents the effects of the optimization based on the reduced
velocity field with 99.99% retained energy on the flow behavior in comparison
to the initial situation. Here, the result also matches the findings of [6] and
reinforces the confidence in the optimization approach using a approximated flow
field. As a result of the deformation of the shape, the vortex shedding is replaced
by a steady behavior.

Figure 5.14: The flow field for the initial and optimized shape at t = 1 s when
performing the optimization based on the itSVD approach (η ≥
99.99%).
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In summary, in this section the application of the itSVD to the unsteady adjoint-
based fluid dynamic shape optimization was tested and validated on a 2D laminar
model problem for minimizing the drag force on a cylinder. It was shown that
the approach provides a memory efficient alternative to the original approach of
storing the full snapshot matrix and can replicate the exact optimization with
nearly the same quality using only about 3.5% of the initial memory requirement.
The approach also needs less computing time due to the parallelization, such
that ultimately the optimization based on the itSVD algorithm both requires
less memory capacity and is executed faster.
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5.2.2 Turbulent Two-Phase Flow around 3D Sphere

In this section, the itSVD approach is applied to the shape optimization of a 3D
sphere. The flow around the sphere is chosen to be two-phase and turbulent in
this test case. The two immiscible phases can be interpreted as water and air,
with the sphere submerged in the water. The sphere has a diameter of D = 1 m
and is positioned with its center 1 m below the free surface. The inflow velocity in
the water phase is set to u1 = 1 m/s and its kinematic viscosity to µ = 10−5 m2/s.
This yields a Reynolds number of Re = 106 and thus a turbulent flow. In addition,
a periodic wave is induced on the free surface of the two phases. The wave is
characterized by a wave height of 0.1 m and a wavelength of 4 m and propagates
in flow direction. A snapshot of the resulting simulation scenario is presented in
Fig. 5.15 by illustrating the volume fraction field.

Figure 5.15: Snapshot of the initial state of the optimization.

For the numerical treatment of this problem, it is evident that the optimization
framework presented in this study in chapter 2 is inadequate to deal with the
novel added phenomena. The presentation of the required extensions is beyond
the scope of this work, such that for this purpose, it is referred to the work
of [1] to complement the approach by the turbulent and multi-phase elements.
However, the basic approach of the optimization remains the same, but the primal
and adjoint equations are modified. For the concrete case, this indicates that in
addition to the velocity field, the eddy viscosity and the volume fraction of the
primal solution have to be stored to be available for the adjoint equations. This
is accomplished by means of the itSVD by extending the solution vector a(tn)
of each time step tn by these quantities. Nevertheless, the approximation of the
new quantities introduces a new source of error. While the evaluations of the
reduced velocity field tolerate deviations in negative and positive directions, the
volume fraction and the eddy viscosity are limited to certain range of values. So
the volume fraction is restricted to the values in the interval [0, 1] and the eddy
viscosity must be positive.
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These restrictions are not taken into account by the itSVD, such that for the
evaluation of the reduced field these quantities have to be controlled again and if
the conditions are violated the values must be set to the nearest interval boundary.

On the basis of these insights, the shape optimization can be carried out. For this
purpose 1000 equidistant time steps with a step size of ∆t = 10−2 s are calculated
in each optimization iteration utilizing a parallelization on 22 partitions. As a
result of considering a 3D computational domain with mesh refinements in the
regions around the sphere and the free surface, it follows that 1.6 · 106 values
must be stored in the associated snapshot matrix per time step. Here, the ex-
act optimization is subject to significant limitations due to the maximal storage
capacity of the system, such that in this case only an optimization based on a
reduced primal flow field is supported.
For this optimization, the maximum deformation is scaled according to Eq. 5.2
via dmax = 10−3 m to a 0.1% deformation of the initial shape with respect to the
diameter of the sphere. Similar to the 2D optimization case, the first 200 steps
of the adjoint solution were neglected for the optimization to allow the adjoint
flow to establish its periodic behavior.
The itSVD is executed in parallel on each of the 22 partitions and is generated
incrementally by means of a bunch update of size b = 10. In contrast to the pre-
vious test case, the requirement to preserve 99.99% of the energy was insufficient
and it caused the adjoint solution process to diverge in the first step. In order to
avoid this behavior, an energy bound of η ≥ 99.9999% per partition was required.
The courses of the resulting cost functional and the memory requirements with
respect to the number of shape updates are presented in Fig. 5.16.
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Figure 5.16: Course of the cost functional and the memory consumption with
respect to optimization cycles.

The analysis of the cost functional reveals that, except for a jump at the begin-
ning, it declines monotonically until the 17th iteration step. Thereby, the course
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begins to flatten towards the end. Although this pattern could indicate a poten-
tial convergence, the cost functional subsequently starts to increase again until
the 21st form update, contradicting a potential convergence. The execution of
a further iteration step was impossible since during the adjoint simulation the
solver begins to diverge and thus the shape optimization is aborted. To inves-
tigate whether this behavior is caused by a poor approximation quality of the
primal flow, the optimization step was repeated again with a manually signifi-
cant increased accuracy of the reduced flow. But the divergence occurred again
in the adjoint problem.
In addition to the cost functional, the memory consumption during optimization
also reveals that here the memory requirements can be reduced far less impres-
sively than in the 2D test case. From an initial memory consumption of about
19.7%, it declines to below 18%, but then starts to increase again from the 14th
shape update onwards, and reaches a maximal memory consumption of almost
20% before the optimization is aborted.

Lastly, the drag force resulting from the optimization is compared with the initial
drag force curve in Fig. 5.17. The comparison reveals that both force trajectories
differ only at the start of the simulation period, but align in the later course. This
observation suggests that the reduction in the cost functional is a result of that
differences and that the optimization eliminates the irregular oscillation that
occurs for the initial shape, but otherwise does not have a sustainable impact
due to the shape optimization.
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Figure 5.17: Initial drag force in contrast to optimized drag force over time.

In summary, the shape optimization of a 3D sphere in a two-phase turbulent flow
presented here does not represent a fully satisfactory result and thus does not
confirm the previous success of applying the itSVD approximation to the shape
optimization of a 2D cylinder.



Chapter 6

Conclusion and Outlook

Within this thesis, a memory efficient model reduction method for the primal
flow field based on the incremental truncated Singular Value Decomposition
(itSVD) was developed and integrated into the in-house finite volume based solver
FreSCo+. The goal of this effort was to establish a shape optimization frame-
work that ensures the optimization of large problems without being constrained
by memory limitations. Concurrently, the approach was intended to have only a
marginal effect on the computational time of the optimization, rather than the
checkpointing techniques which cause a great computational overhead.

The memory efficiency of the reduced model is ensured in this work by the ap-
plication of a adaptive rank determination routine, which minimizes the storage
requirements with respect to a predefined minimal approximation quality. In
practice, this minimal quality is often prescribed by the amount of retained en-
ergy of the reduced flow field. Moreover, the computational effort of constructing
the reduced primal solution is significantly reduced by the utilization of the bunch
update which lowers the frequency of the incremental update of the reduced pri-
mal flow field. Furthermore, the itSVD is parallelized according to a domain
decomposition approach to match the parallelization of the FreSCo+ routine and
to grant an optimal interplay of both parts.

The applicability of the resulting method to the unsteady adjoint-based shape
optimization was tested for a periodic laminar flow around a 2D cylinder, where
the minimization of drag was demanded. With the requirement that the reduced
flow field retains 99.99% of the original energy, it was demonstrated that the
optimization based on the reduced flow yields almost the identical result as the
optimization based on the full primal solution by using only 3.5% of the original
memory requirement. In addition to this high memory reduction, the optimiza-
tion of the reduced case also required less computation time.
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However, the results of the second test case with the aim of the shape optimiza-
tion of the 3D sphere in a turbulent two-phase flow field do not confirm the
unrestricted applicability of the proposed approach. In this case, the approxi-
mation in maximum requires almost 20% of the original memory. Furthermore,
a divergence behavior occurs in the course of the computation of the adjoint
equations, such that the optimization fails. As a possible source of error, the
approximations of the additional flow quantities that have to be stored in this
case can be identified here. A potential countermeasure to this problem could be
to create a dedicated approximation for each field quantity instead of one large
itSVD in which all field quantities are stored. The resulting ability to adjust the
approximation quality for each field quantity individually could offer interesting
opportunities for future works with respect to a problem-specific choice of the
approximation accuracy for each field quantity.

Furthermore, combining the incremental approximation approach with the check-
pointing techniques could provide a suitable trade-off between computational and
memory cost for rather sophisticated memory intensive optimizations and there-
fore offers promising prospects with respect to the application of the unsteady
adjoint-based shape optimization to real-world engineering problems.
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